题目内容
【题目】如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F, 点B的对应点为B′.
(1)证明:AE=CF;
(2)若AD=12,DC=18,求DF的长.
【答案】(1)见解析;(2)5.
【解析】
(1)根据折叠的性质以及矩形的性质,运用ASA即可判定△ADF≌△AB′E;
(2)先设FA=FC=x,则DF=DC-FC=18-x,根据Rt△ADF中,AD2+DF2=AF2,即可得出方程122+(18-x)2=x2,解得x=13.所在DF=18-13=5.
(1)证明:∵四边形ABCD是矩形,
∴∠D=∠C=∠B′=90°,AD=CB=AB′,
∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°,
∴∠DAF=∠B′AE,
在△ADF和△AB′E中,
,
∴△ADF≌△AB′E(ASA).
∴AE=CF;
(2)解:由折叠性质得FA=FC,
设FA=FC=x,则DF=DC-FC=18-x,
在Rt△ADF中,AD2+DF2=AF2,
∴122+(18-x)2=x2.
解得x=13.
∴DF=18-13=5
练习册系列答案
相关题目
【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准质量的差值(单位:g) | 5 | 2 | 0 | 1 | 3 | 6 |
袋 数 | 1 | 4 | 3 | 4 | 5 | 3 |
这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为500克,则抽样检测的总质量是多少?