题目内容
【题目】如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC。若M、N分别是BD、BC上的动点,则CM+MN的最小值是( )
A. 2 B. 4 C. 6 D. 8
【答案】B
【解析】
过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.
解:过点C作CE⊥AB于点E,交BD于点M′,过点M作MN′⊥BC于N′,
∵BD平分∠ABC,M′E⊥AB于点E,M′N′⊥BC于N
∴M′N′=M′E,
∴CE=CM′+M′E
∴当点M与M′重合,点N与N′重合时,CM+MN的最小值.
∵三角形ABC的面积为8,AB=4,
∴×4CE=8,
∴CE=4.
即CM+MN的最小值为4.
故选:B.
练习册系列答案
相关题目
【题目】2018年6月上海语文把小学教材中“外婆”改成“姥姥一事,引起社会的广泛关注和讨论,明德集团某校文学社就此召开了一次研讨会,为了传承中国传统文化,并组织了一次全体学生“汉字听写”大赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果作为样本进行整理,绘制成如下的统计图表:
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息完成下列问题:
(1)统计表中的m= ,n= ,并补全条形统计图;
(2)扇形统计图中“C组“所对应的圆心角的度数是 ;
(3)已知该校共有600名学生,如果听写正确的字的个数不少于24个定为合格,请你估计该校本次听写比赛合格的学生人数.