题目内容
【题目】如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.
(1)①若m=50,则射线OC的方向是________;
②图中与∠BOE互余的角有__________,与∠BOE互补的角有__________.
(2)若射线OA是∠BON的平分线,则∠BOS与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.
【答案】 (1)①北偏东40° ; ② ∠BOS,∠COE ;∠BOW,∠SOC;(2)∠AOC=∠BOS.
【解析】
(1)①由m=50,m+n=90°可求n的值,从而得到结论;
②余角和补角的定义,可得答案;
(2)根据OA是∠BON的角平线,可得∠NOA与∠NOB的关系,根据两角互补,可得∠BON与∠SOB的关系,再根据角平分线,可得∠NOA与∠NOB的关系,根据两角互余,可得∠NOC与∠SOB的关系,根据角的和差,可得答案.
(1)①若m=50,m+n=90°,n=40°,
则射线OC的方向是北偏东40°;
②∠BOS+∠BOE=90°,图中与∠BOE互余的角有∠BOS,
由m°的角与n°的角互余,∠BOE+COE=90°, 得图中与∠BOE互余的角有∠COE,
∠BOE+BOW=180°,∠BOE互补的角有∠BOW.
∵∠NOC+∠COE=90°,∠EOC+∠BOE=90°,∴∠BOE=∠NOC.
∵∠NOC+∠SOC=180°,∴∠BOE互补的角有∠SOC.
故答案为:北偏东40°;∠BOS,∠COE;∠BOW,∠SOC.
(2)∠AOC=.
∵射线OA是∠BON的角平分线,∴∠NOA=∠NOB,
∵∠SOB+∠BON=180°,
∠BON=180°﹣∠SOB,
∠NOA=∠BON=90,
∵∠NOC+∠SOB=90°,∠NOC=90°﹣∠SOB,
∠AOC=N0A﹣∠NOC=90°﹣﹣(90°﹣∠SOB)
∴∠AOC=.
【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.两数和的完全平方公式 |
D.两数差的完全平方公式 |
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.