题目内容

如图所示,直线y=x+1与y轴交于点A1,以OA1为边作正方形OA1B1C1,然后延长C1B1与直线y=x+1交于点A2,得到第一个梯形A1OC1A2;再以C1A2为边作正方形C1A2B2C2,同样延长C2B2与直线y=x+1交于点A3得到第二个梯形A2C1C2A3;再以C2A3为边作正方形C2A3B3C3,延长C3B3,得到第三个梯形;…则第2个梯形A2C1C2A3的面积是______;第n(n是正整数)个梯形的面积是______(用含n的式子表示).
由直线y=x+1知:A1(0,1),即OA1=A1B1=1,
∴A2的坐标为(1,2)或(21-1,22-1);
∵A2的坐标为:(1,2),即A2C1=2,
∴A3的坐标为:(1+2,4),即(3,4)或(22-1,22);
∴S梯形A2C1C2A3=
(2+4)×2
2
=6.
∵A3的坐标为:(3,4),即A3C2=4,
∴的A4坐标为:(1+2+4,8),即(7,8)或(23-1,23);
依此类推,点An的坐标应该为(2n-1-1,2n-1).
∴S第n(n是正整数)个梯形=
(2n-1+2n)2n-1
2

故答案为6,
(2n-1+2n)2n-1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网