题目内容
【题目】“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:
(1)a= , b= , m= ;
(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;
(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.
【答案】
(1)10;15;200
(2)解:线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;
线段OD所在的直线的函数解析式为y=120x.
联立两函数解析式成方程组,
,解得: ,
∴3000﹣2250=750(米).
答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.
(3)解:根据题意得:|200x﹣1500﹣120x|=100,
解得:x1= =17.5,x2=20.
答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.
(4)解:当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);
当线段OD过点C时,小军的速度为3000÷22.5= (米/分钟).
结合图形可知,当100<v< 时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).
【解析】解:(1)1500÷150=10(分钟), 10+5=15(分钟),
(3000﹣1500)÷(22.5﹣15)=200(米/分).
故答案为:10;15;200.
(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.