题目内容

【题目】某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?

【答案】
(1)解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,

=

x=15,

经检验x=15是原方程的解.

∴40﹣x=25.

甲,乙两种玩具分别是15元/件,25元/件


(2)解:设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,

解得20≤y<24.

因为y是整数,甲种玩具的件数少于乙种玩具的件数,

∴y取20,21,22,23,

共有4种方案.


【解析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网