题目内容
【题目】如图是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D处竖直立一根木棒CD,并测得此时木棒的影长DE=2.4米;然后,小希在BD的延长线上找出一点F,使得A、C、F三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.
【答案】43米.
【解析】
根据相似三角形的性质得到==,等量代换得到=,代入数据即可得到结论.
由题意得:∠ABD=∠CDE=90°,∠ADB=∠CED,∴△CDE∽△ABD,∴=.
∵∠F=∠F,∴△CDF∽△ABF,∴=,∴=,即=,∴BD=60,∴=,∴AB=43.
答:小雁塔的高度AB是43米.
【题目】一个金属棒在不同温度下,其长度也不同,其变化情况如下表:
温度/℃ | … | -5 | 0 | 5 | 10 | 15 | … |
长度/ | … | 13.9 | 13.95 | 14 | 14.05 | 14.1 | … |
(1)上述两个变量中,自变量是 ;
(2)设自变量为,因变量为,求出关于的解析式;
(3)当温度为30℃时,求金属棒的长度;
(4)若某天金属棒的长度是14.18,则当天的气温约是多少℃?
【题目】(10分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
分数 | 7分 | 8分 | 9分 | 10分 |
人数 | 11 | 0 |
| 8 |
(1)请将甲校成绩统计表和图2的统计图补充完整;
(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.