题目内容

【题目】如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GDAO于点D,交AC于点E,交⊙O于点F,MGE的中点,连接CF,CM.

(1)判断CM与⊙O的位置关系,并说明理由;

(2)若∠ECF=2A,CM=6,CF=4,求MF的长.

【答案】(1)CM与⊙O相切理由见解析;(2)MF=

【解析】

(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;

(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME-EF即可.

:(1)CM与⊙O相切.理由如下:

连接OC,如图,

GDAO于点D,

∴∠G+GBD=90°,

AB为直径,

∴∠ACB=90°,

M点为GE的中点,

MC=MG=ME,

∴∠G=1,

OB=OC,

∴∠B=2,

∴∠1+2=90°,

∴∠OCM=90°,

OCCM,

CM为⊙O的切线;

(2)∵∠1+3+4=90°,5+3+4=90°,

∴∠1=5,

而∠1=G,5=A,

∴∠G=A,

∵∠4=2A,

∴∠4=2G,

而∠EMC=G+1=2G,

∴∠EMC=4,

而∠FEC=CEM,

∴△EFC∽△ECM,

,即

CE=4,EF=

MF=ME﹣EF=6﹣=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网