题目内容

【题目】如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求证:AD=AE;
(2)若AD=8,DC=4,求AB的长.

【答案】
(1)证明:连接AC,

∵AB∥CD,

∴∠ACD=∠BAC,

∵AB=BC,

∴∠ACB=∠BAC,

∴∠ACD=∠ACB,

∵AD⊥DC,AE⊥BC,

∴∠D=∠AEC=90°,

∵AC=AC,

∴△ADC≌△AEC,(AAS)

∴AD=AE


(2)解:由(1)知:AD=AE,DC=EC,

设AB=x,则BE=x﹣4,AE=8,

在Rt△ABE中∠AEB=90°,

由勾股定理得:82+(x﹣4)2=x2

解得:x=10,

∴AB=10.

说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.


【解析】(1)连接AC证明AD、AE所在的三角形全等,即证明△ADC≌△AEC,即可得出结论。
(2)设AB=x,再用含x的代数式表示BE,利用勾股定理得到关于x的方程,求解即可。
【考点精析】本题主要考查了勾股定理的概念和直角梯形的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;一腰垂直于底的梯形是直角梯形才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网