题目内容

如图,若AD是⊙的直径,AB是⊙O的弦,∠DAB=50°,点C在圆上,则
ACB的度数是
A.100°B.50°C.40°D.20°
C
先根据AD是⊙O的直径,得∠ABD=90°,再根据三角形的内角和定理求出∠ADB的度数,最后由圆周角定理得∠ACB.
解:∵AD是直径,
∴∠ABD=90°,
∴∠ADB=180°-∠ABD-∠DAB=40°,
∴∠ACB=∠ADB=40°.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网