题目内容
请先阅读下列一组内容,然后解答问题:
先观察下列等式:
=1-
,
=
-
,
=
-
…
=
-
将以上等式两边分别相加得:
+
+
+…+
=+(
-
)+(
-
)+…+(
-
)=
-
+
-
+…+
-
=1-
=
然后用你发现的规律解答下列问题:
(1)猜想并写出:
=______;
(2)直接写出下列各式的计算结果:
①
+
+
+…+
=______;
②
+
+
+…+
=______;
(3)探究并计算:
+
+
+…+
.
先观察下列等式:
1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
1 |
9×10 |
1 |
9 |
1 |
10 |
将以上等式两边分别相加得:
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
9×10 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
9 |
1 |
10 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
9 |
1 |
10 |
1 |
10 |
9 |
10 |
然后用你发现的规律解答下列问题:
(1)猜想并写出:
1 |
n(n-1) |
(2)直接写出下列各式的计算结果:
①
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2010×2011 |
②
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
n(n+1) |
(3)探究并计算:
1 |
2×4 |
1 |
4×6 |
1 |
6×8 |
1 |
2012×2014 |
(1)根据题意得:
=
-
;
(2)①原式=1-
+
-
+…+
-
=1-
=
;
②原式═1-
+
-
+…+
-
=1-
=
;
(3)原式=
×(
-
+
-
+…+
-
)=
×(
-
)=
.
故答案为:(1)
=
-
;(2)①
;②
1 |
n(n-1) |
1 |
n-1 |
1 |
n |
(2)①原式=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2010 |
1 |
2011 |
1 |
2011 |
2010 |
2011 |
②原式═1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
n |
n+1 |
(3)原式=
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
6 |
1 |
2012 |
1 |
2014 |
1 |
2 |
1 |
2 |
1 |
2014 |
503 |
2014 |
故答案为:(1)
1 |
n(n-1) |
1 |
n-1 |
1 |
n |
2010 |
2011 |
n |
n+1 |
练习册系列答案
相关题目