题目内容
化简求值:
(1-(x2-1)+2(x2-2x-
),其中x=-2;
(2)2x2y-[x2y+2(x2y-xy)]+y,其中x2=2x+1,y=
.
(1-(x2-1)+2(x2-2x-
1 |
2 |
(2)2x2y-[x2y+2(x2y-xy)]+y,其中x2=2x+1,y=
2011 |
2012 |
分析:(1)根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可;
(2)先去括号、合并同类项,把整式化为最简,再由x2=2x+1得出:x2-2x-1=0,从而求值.
(2)先去括号、合并同类项,把整式化为最简,再由x2=2x+1得出:x2-2x-1=0,从而求值.
解答:解:(1)原式=-x2+1+2x2-4x-1
=x2-4x;
当x=-2时,
原式=(-2)2-4×(-2)=4+8=12;
(2)原式=2x2y-x2y-2x2y+2xy+y
=-x2y+2xy+y
=-y(x2-2x-1)
当x2-2x-1=0,y=
时,
原式=0.
=x2-4x;
当x=-2时,
原式=(-2)2-4×(-2)=4+8=12;
(2)原式=2x2y-x2y-2x2y+2xy+y
=-x2y+2xy+y
=-y(x2-2x-1)
当x2-2x-1=0,y=
2011 |
2012 |
原式=0.
点评:本题主要考查了去括号的方法和合并同类项在整式的计算中的应用,做题过程中,要注意变号,难度适中.
练习册系列答案
相关题目