题目内容
【题目】尺规作图:如图,AD为⊙O的直径。
(1)求作:⊙O的内接正六边形ABCDEF.(要求:不写作法,保留作图痕迹);
(2)已知连接DF,⊙O的半径为4,求DF的长。
【答案】(1)见解析;(2)4
【解析】
(1)如图,在⊙O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;
(2)连接OF,可得△OFE是等边三角形,边长为4,可求得∠OEF=60°,∠DFE=30°,设BE与DF交于G点,可得∠FGE=90°,即可求得FG的长,进而求得FD的长.
(1)如图,正六边形ABCDEF为所作;
(2)连接OF,设BE与DF交于G点
∵六边形ABCDEF为正六边形
∴∠FOE=60°,DF=DE,∠DEF=120°
∴∠DFE=30°
∵OE=OF
∴△FOE为等边三角形
∴EF=OE=4,∠OEF=60°
∴∠FGE=90°
∴EG=OE=2
∴FG=
∴FD=2FG=
【题目】在函数学习中,我们经历了“确定函数表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时我们也学习了绝对值的意义,结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣1|+b中,当x=2时,y=﹣3;x=0时,y=﹣2.
(1)求这个函数的表达式;
(2)用列表描点的方法画出该函数的图象;请你先把下面的表格补充完整,然后在下图所给的坐标系中画出该函数的图象;
x | … | ﹣6 | ﹣4 | ﹣2 | 0 | 2 | 4 | 6 | … |
y | … |
| 0 | ﹣1 | ﹣2 | ﹣3 | ﹣2 |
| … |
(3)观察这个函数图象,并写出该函数的一条性质;
(4)已知函数y= (x>0)的图象如图所示,与y=|kx﹣1|+b的图象两交点的坐标分别是(2+4,-2),(2﹣2