题目内容
【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若⊙O的半径为5,sinB=,求DE的长.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)连接AD,根据圆周角定理得到AD⊥BC,根据线段垂直平分线的性质证明;
(2)连接OD,根据三角形中位线定理得到OD∥AC,得到DE⊥OD,证明结论;
(3)解直角三角形求得AD,进而根据勾股定理求得BD、CD,据正弦的定义计算即可求得.
(1)证明:如图,连接AD,
∵AB是⊙O的直径,
∴AD⊥BC,又DC=BD,
∴AB=AC;
(2)证明:如图,连接OD,
∵AO=BO,CD=DB,
∴OD是△ABC的中位线,
∴OD∥AC,又DE⊥AC,
∴DE⊥OD,
∴DE为⊙O的切线;
(3)解:∵AB=AC,
∴∠B=∠C,
∵⊙O的半径为5,
∴AB=AC=10,
∵sinB= = ,
∴AD=8,
∴CD=BD= =6,
∴sinB=sinC==,
∴DE=.
练习册系列答案
相关题目