题目内容
【题目】如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.
(1)求证:△AED≌△CFB;
(2)求证:四边形AFCE是平行四边形
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;
(2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠CBF=∠ADE,
∵AE⊥BD,CF⊥BD,
∴∠CFB=∠AED=90°,
∴△AED≌△CFB(AAS).
(2)证明:∵△AED≌△CFB,
∴AE=CF,
∵AE⊥BD,CF⊥BD,
∴AE∥CF,
∴四边形AFCE是平行四边形.
练习册系列答案
相关题目