题目内容
【题目】如图,四边形是矩形
(1)如图1,、分别是、上的点,,垂足为,连接.
①求证:;
②若为的中点,求证:;
(2)如图2,将矩形沿折叠,点落在点处,点落在边的点处,连接交于点,是的中点.若,,直接写出的最小值为 .
【答案】(1) ①见解析;②见解析;(2)
【解析】
(1)①证明△FBC∽△ECD可得结论.
②想办法证明∠AEB=∠AGB,可得sin∠AGB=sin∠AEB=.
(2)如图2中,取AB的中点T,连接PT,CP.因为四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,所以PT=PQ,MN垂直平分线段BS,推出BP=PS,由∠BCS=90°,推出PC=PS=PB,推出PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小.
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴∠CDE=∥BCF=90°,
∵BF⊥CE,
∴∠BGC=90°,
∴∠BCG+∠FBC=∠BCG+∠ECD=90°,
∴∠FBC=∠ECD,
∴△FBC∽△ECD,
∴.
②证明:如图1中,连接BE,GD.
∵BF⊥CE,EG=CG,
∴BF垂直平分线段EC,
∴BE=CB,∠EBG=∠CBG,
∵DG=CG,
∴∠CDG=∠GCD,
∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,
∴∠ADG=∠BCG,
∵AD=BC,
∴△ADG≌△BCG(SAS),
∴∠DAG=∠CBG,
∴∠DAG=∠EBG,
∴∠AEB=∠AGB,
∴sin∠AGB=sin∠AEB=
(2)如图2中,取AB的中点T,连接PT,CP.
∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,
∴PT=PQ,MN垂直平分线段BS,
∴BP=PS,
∵∠BCS=90°,
∴PC=PS=PB,
∴PQ+PS=PT+PC,
当T,P,C共线时,PQ+PS的值最小,最小值=,
∴PQ+PS的最小值为.
【题目】某课外学习小组根据学习函数的经验,对函数的图象与性质进行了探究请补充完整以下探索过程:
(1)列表:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | m | 0 | -3 | -4 | -3 | 0 | -3 | -4 | n | 0 | … |
直接写出________,________;
(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象,并结合图象写出该函数的两条性质:
性质1______________________________________________________
性质2_______________________________________________________
(3)若方程有四个不同的实数根,请根据函数图象,直接写出k的取值范围.
【题目】某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:
类别 | 重视 | 一般 | 不重视 |
人数 | a | 15 | b |
(1)求表格中a,b的值;
(2)请补全统计图;
(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.