题目内容
【题目】如图1,在四边形中,∥,,直线.当直线沿射线方向,从点开始向右平移时,直线与四边形的边分别相交于点、.设直线向右平移的距离为,线段的长为,且与的函数关系如图2所示,则四边形的周长是_____.
【答案】
【解析】
根据图1直线l的平移过程分为三段,当F与A重合之前,x与y都不断增大,当当F与A重合之后到点E与点C重合之前,x增加y不变,E与点C重合后继续运动至F与D重合x增加y减小.结合图2可知BC=5,AD=7-4=3,由且∠B=30°可知AB=,当F与A重合时,把CD平移到E点位置可得三角形AED′为正三角形,可得CD=2,进而可求得周长.
由题意和图像易知BC=5,AD=7-4=3
当BE=4时(即F与A重合),EF=2
又∵且∠B=30°
∴AB=,
∵当F与A重合时,把CD平移到E点位置可得三角形AED′为正三角形
∴CD=2
∴AB+BC+CD+AD=+5+2+3=10+
故答案时.
练习册系列答案
相关题目
【题目】某校门口竖着“前方学校,减速慢行”的交通指示牌CD,数学“综合与实践”小组的同学将“测量交通指示牌CD的高度”作为一项课题活动,他们定好了如下测量方案:
项目 | 内容 |
课题 | 测量交通指示牌CD的高度 |
测量示意图 | |
测量步骤 | (1)从交通指示牌下的点M处出发向前走10 米到达A处; (2)在点A处用量角仪测得∠DAM=27°; (3)从点A沿直线MA向前走10米到达B处;(4)在点B处用量角仪测得∠CBA=18°. |
请你帮助该小组同学根据上表中的测量数据,求出交通指示牌CD的高度.(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)