题目内容

如图,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,
tan∠ADC=2.
⑴求证:DC=BC;
⑵E是梯形内的一点,F是梯形外的一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

(1)过A作DC的垂线AM交DC于M,  

AM=BC=2.(1分)    又tan∠ADC=2,所以.(2分)
因为MC=AB=1,所以DC=DM+MC=2,即DC=BC.(3分)
(2)等腰直角三角形.(4分)
证明:因为DE=DF,∠EDC=∠FBC,DC=BC.   所以,△DEC≌△BFC(5分)
所以,CE=CF,∠ECD=∠BCF.   
所以,∠ECF=∠BCF+∠BCE=∠ECD+∠BCE=∠BCD=90°
即△ECF是等腰直角三角形.(6分)
(3)设BE=k,则CE=CF=2k,所以.(7分)
因为∠BEC=135°,又∠CEF=45°,所以∠BEF=90°.(8分)    
所以(9分)
所以.(10分)

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网