题目内容
【题目】如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.乐乐用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)增长或缩短.经测量,得到如下数据:
单层部分的长度(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
双层部分的长度(cm) | … | 73 | 72 | 71 |
| … | 0 |
(1)根据上表中数据的规律,填写表格中空白处的数据;
(2)设单层部分的长度为xcm,请用含x的代数式表示出双层部分的长度 cm;
(3)根据乐乐的身高和习惯,挎带的长度为110cm时,背起来最舒适,请求出此时单层部分的长度.
【答案】(1)70;(2)y=﹣x+75cm;(3)70cm
【解析】
(1)根据规律即可得出结果;
(2)观察表格可知,y是x的一次函数,设y=kx+b,利用待定系数法即可解决问题;
(3)列出方程即可解决问题.
解:(1)根据单层部分的长度每增加2cm,双层部分的长度减小1cm,可得当单层部分的长度为10cm时,双层部分的长度为70.
故答案为:70;
(2)观察表格可知,y是x的一次函数,设y=kx+b,
则有 ,解得,
∴y=﹣x+75.
故答案为:y=﹣x+75;
(3)根据题意得:
,
解得x=70.
答:挎带的长度为110cm时,单层部分的长度为70cm.
【题目】某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)请填写下表
A(吨) | B(吨) | 合计(吨) | |
C |
|
| 240 |
D |
| x | 260 |
总计(吨) | 200 | 300 | 500 |
(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.