题目内容
【题目】已知两动圆F1:(x+ )2+y2=r2和F2:(x﹣ )2+y2=(4﹣r)2(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A、B满足: =0.
(1)求曲线C的方程;
(2)证明直线AB恒经过一定点,并求此定点的坐标;
(3)求△ABM面积S的最大值.
【答案】
(1)解:设两动圆的公共点为Q,则有|QF1|+|QF2|=4(4>|F1F2|).
由椭圆的定义可知Q的轨迹为椭圆,a=2,c= .b=1,
所以曲线C的方程是: =1
(2)解:证明:由题意可知:M(0,1),设A(x1,y1),B(x2,y2),
当AB的斜率不存在时,易知满足条件 =0的直线AB为:x=0,过定点N(0,﹣ ).
当AB的斜率存在时,设直线AB:y=kx+m,联立方程组有:(1+4k2)x2+8kmx+4m2﹣4=0,
x1+x2=﹣ ①,x1x2= ②,
因为 =0,所以有x1x2+(kx1+m﹣1)(kx2+m﹣1)=0,
把①②代入整理化简得(m﹣1)(5m+3)=0,m=﹣ 或m=1(舍),
综合斜率不存在的情况,直线AB恒过定点N(0,﹣ )
(3)解:△ABM面积S=S△MNA+S△MNB= |MN||x1﹣x2|=
因N在椭圆内部,所以k∈R,可设t= ≥2,
S= = ≤ = (k=0时取到最大值).
所以△ABM面积S的最大值为
【解析】(1)设两动圆的公共点为Q,则有|QF1|+|QF2|=4,运用椭圆的定义,即可得到a,c,b,进而得到Q的轨迹方程;(2)M(0,1),设A(x1 , y1),B(x2 , y2),根据直线AB的斜率不存在和存在,设出直线方程,根据条件,运用向量的数量积的坐标表示,结合韦达定理和直线恒过定点的求法,即可得到定点;(3)△ABM面积S=S△MNA+S△MNB= |MN||x1﹣x2|,代入韦达定理,化简整理,结合N在椭圆内,运用对勾函数的单调性,即可得到最大值.
【题目】2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:
(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94).
(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
②每次赠送的随机话费和对应概率如下:
赠送话费(单位:元) | 10 | 20 |
概率 |
|
|
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.
附: ≈14.5
若Z~N(μ,δ2),则P(μ﹣δ<Z<μ+δ)=0.6826,P(μ﹣2δ<Z<μ+2δ)=0.9544.