题目内容
【题目】已知二次函数的与的部分对应值如表:
下列结论:抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则,其中正确的个数是( )
A.B.C.D.
【答案】B
【解析】
先利用交点式求出抛物线解析式,则可对①进行判断;利用抛物线的对称性可对②进行判断;利用抛物线与x轴的交点坐标为(0,0),(4,0)可对③④进行判断;根据二次函数的性质求出x的值,即可对⑤进行判断.
设抛物线解析式为y=ax(x﹣4),
把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得:a=1,
∴抛物线解析式为y=x2﹣4x,所以①正确;
抛物线的对称轴为直线x==2,所以②正确;
∵抛物线与x轴的交点坐标为(0,0),(4,0),开口向上,
∴当0<x<4时,y<0,所以③错误;
抛物线与x轴的两个交点间的距离是4,所以④正确;
若A(x1,2),B(x2,3)是抛物线上两点,由x2﹣4x=2,解得:x1=,由x2﹣4x=3,解得:x2=,若取x1=,x2=,则⑤错误.
故选:B.
练习册系列答案
相关题目