题目内容

【题目】已知,在Rt△ABCRt△DEF中,ACB=EDF=90°A=30°E=45°AB=EF=6,如图1D是斜边AB的中点,将等腰Rt△DEF绕点D顺时针方向旋转角α0°<α<90°),在旋转过程中,直线DEAC相交于点M,直线DFBC相交于点N

1)如图1,当α=60°时,求证:DM=BN

2)在上述旋转过程中,的值是一个定值吗?请在图2中画出图形并加以证明;

3)如图3,在上述旋转过程中,当点C落在斜边EF上时,求两个三角形重合部分四边形CMDN的面积.

【答案】1)详见解析;(2,是一个定值;(3

【解析】

1)利用ASA,从而得出

2)如下图,先证,得出,然后在,利用tanB得出的值,最后得出的值;

3)如下图,先证点CEF的中点,然后利用平分可推导出四边形为正方形,从而得出,进而得出面积.

解:(1)由题意,

是斜边的中点,

2,是一个定值.

证明:如图1,作于点于点

中,∴tan∠B

又由(1)可知:

3)连接,作于点于点

中,点的中点,

中点,

平分

四边形为正方形,

四边形正方形

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网