题目内容
(11·肇庆)如图3,四边形ABCD是圆内接四边形,E是BC延长线上一点,若
∠BAD=105°,则∠DCE的大小是
∠BAD=105°,则∠DCE的大小是
A.115° | B.l05° | C.100° | D.95° |
B
根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD与∠DEC为邻补角,得到∠DCE=∠BAD=105°.
解:∵四边形ABCD是圆内接四边形,
∴∠BAD+∠BCD=180°,
而∠BCD+∠DCE=180°,
∴∠DCE=∠BAD,
而∠BAD=105°,
∴∠DCE=105°.
故选B.
本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了邻补角的定义以及等角的补角相等.
解:∵四边形ABCD是圆内接四边形,
∴∠BAD+∠BCD=180°,
而∠BCD+∠DCE=180°,
∴∠DCE=∠BAD,
而∠BAD=105°,
∴∠DCE=105°.
故选B.
本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了邻补角的定义以及等角的补角相等.
练习册系列答案
相关题目