题目内容

【题目】如图,在长方形ABCD中,AB4BC7,点PBC边上与点B不重合的动点,过点P的直线交CD的延长线于点R,交AD于点Q(Q与点D不重合),且∠RPC45°.BPx,梯形ABPQ的面积为y,求yx之间的函数关系式,并求出自变量x的取值范围.

【答案】y4x8(0<x<3)

【解析】

由梯形面积公式S=(AQ+BP)×AB,设BP=x,AB=4,需求得AQ,又∠RPC=45,AQ=AD-QD,QD=RD=RC-CD=PC-CD,由此得出y与x之间的函数关系;对于自变量x的取值范围,求临界条件Q与D重合时,BP=x=3,又Q与D不重合,故x<3.

如图,过点D作DP′∥PQ,交BC于点P′,

则∠DP′C=∠RPC=45°,

∴P′C=CD=4,∴BP′=3.∴BP<3.

∵BP=x,∴PC=7-x.

在Rt△PCR中,∠C=90°,

∠RPC=45°,

∴CR=PC=7-x.

∴QD=RD=CR-CD

=7-x-4

=3-x,

∴AQ=AD-QD

=7-(3-x)

=4+x.

∴y= (BP+AQ)·AB

(x+4+x)×4

=4x+8(0<x<3).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网