题目内容
【题目】阅读材料,请回答下列问题
材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:S=…①(其中a,b,c为三角形的三边长,S为面积)而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S=……②(其中p=)
材料二:对于平方差公式:a2﹣b2=(a+b)(a﹣b)
公式逆用可得:(a+b)(a﹣b)=a2﹣b2,
例:a2﹣(b+c)2=(a+b+c)(a﹣b﹣c)
(1)若已知三角形的三边长分别为3、4、5,请试分别运用公式①和公式②,计算该三角形的面积;
(2)你能否由公式①推导出公式②?请试试.
【答案】(1)三角形的面积为6;(2)见解析.
【解析】
(1)根据材料,代入公式即可求解;
(2)根据平方差公式和完全平方公式即可推导.
解:(1)设a=3,b=4,c=5,
∵32+42=25,52=25,
∴a2+b2=c2,
a2b2=144,
∴S===6;
∵p===6,
p﹣a=6﹣3=3,p﹣b=6﹣4=2,p﹣c=6﹣5=1,
S=
=
=6.
∴三角形的面积为6.
(2)∵[a2b2﹣()2]
=[﹣]
=[(a+b)2﹣c2][c2﹣(a﹣b)2]
=(a+b+c)(a+b﹣c)(a+c﹣b)(b+c﹣a)
=×2p(2p﹣2c)(2p﹣2b)(2p﹣2a)
=p(p﹣a)(p﹣b)(p﹣c)
∴=.
练习册系列答案
相关题目