题目内容
【题目】如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.
(1)求证:△ADP≌△ECP;
(2)若BP=nPK,试求出n的值;
(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.
【答案】(1)证明见试题解析;(2)3;(3)证明见试题解析,120°.
【解析】
试题(1)由菱形的性质得到AD∥BC,根据由平行线的性质得到∠DAP=∠CEP,∠ADP=∠ECP,根据全等三角形的判定定理证明结论;
(2)作PI∥CE交DE于I,由点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质证明结论;
(3)作OG⊥AE于G,由平行线等分线段定理得到MG=NG,又OG⊥MN,可证明△MON是等腰三角形,由直角三角形的性质和锐角三角函数求出∠MON的度数.
试题解析:(1)∵四边形ABCD为菱形,∴AD∥BC,∴∠DAP=∠CEP,∠ADP=∠ECP,在△ADP和△ECP中,∵∠DAP=∠CEP,∠ADP=∠ECP,DP=CP,∴△ADP≌△ECP;
(2)如图1,作PI∥CE交DE于I,则,又点P是CD的中点,∴
,∵△ADP≌△ECP,∴AD=CE,∴
,∴BP=3PK,∴n=3;
(3)如图2,作OG⊥AE于G,∵BM丄AE于,KN丄AE,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即△MON是等腰三角形,由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=,则AP=
,根据三角形面积公式,BM=
,由(2)得,PB=3PO,∴OG=
BM=
,MG=
MP=
,tan∠MOG=
,∴∠MOG=60°,∴∠MON的度数为120°.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某商场计划购进甲、乙两种商品共件,这两种商品的进价、售价如表所示:
进价(元/件) | 售价(元/件) | |
甲种商品 | ||
乙种商品 |
设购进甲种商品(
,且
为整数)件,售完此两种商品总利润为
元.
(1)该商场计划最多投入元用于购进这两种商品共
件,求至少购进甲种商品多少件?
(2)求与
的函数关系式;
(3)若售完这些商品,商场可获得的最大利润是__________元.
【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:
测试项目 | 测试成绩 | ||
甲 | 乙 | 丙 | |
专业知识 | 74 | 87 | 90 |
语言能力 | 58 | 74 | 70 |
综合素质 | 87 | 43 | 50 |
(1)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?
(2)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x= ,y= .(写出x与y的一组整数值即可)