题目内容
【题目】在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,直线经过,两点.
求抛物线的解析式;
在上方的抛物线上有一动点.
①如图,当点运动到某位置时,以,为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;
②如图,过点,的直线交于点,若,求的值.
【答案】(1);(2)①点的坐标是;②.
【解析】
(1)由直线的解析式y=x+4易求点A和点C的坐标,把A和C的坐标分别代入y=- x2+bx+c求出b和c的值即可得到抛物线的解析式;
(2)①若以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,则PQ∥AO,再根据抛物线的对称轴可求出点P的横坐标,由(1)中的抛物线解析式,进而可求出其纵坐标,问题得解;
②过P点作PF∥OC交AC于点F,因为PF∥OC,所以△PEF∽△OEC,由相似三角形的性质:对应边的比值相等可求出PF的长,进而可设点点F(x,x+4),利用(x2x+4)(x+4)=,可求出x的值,解方程求出x的值可得点P的坐标,代入直线y=kx即可求出k的值.
解:∵直线经过,两点,
∴点坐标是,点坐标是,
又∵抛物线过,两点,
∴,解得:,
∴抛物线的解析式为.
①如图
∵,
∴抛物线的对称轴是直线.
∵以,为邻边的平行四边形的第四个顶点恰好也在抛物线上,
∴,.
∵,都在抛物线上,
∴,关于直线对称,
∴点的横坐标是,
∴当时,,
∴点的坐标是;
②过点作交于点,
∵,
∴,
∴.
又∵,
∴,
设点,
∴,
化简得:,解得:,.
当时,;当时,,
即点坐标是或.
又∵点在直线上,
∴.
【题目】在方格中的位置如图所示.
(1)请在方格纸上(小方格的边长为1)建立平面直角坐标系,使得A、B两点的坐标分别为,.并求出C点的坐标;
(2)作出关于x轴对称的,并写出、两点的坐标.
(3)求的面积。
【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.
组别 | 时间(小时) | 频数(人数) | 频率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合计 | 1 |
请根据图表中的信息,解答下列问题:
(1)表中的a= ,b= ,中位数落在 组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.
【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:
… | … | ||||||
… | … |
根据上表填空:
①抛物线与轴的交点坐标是________和________;
②抛物线经过点,________;
③在对称轴右侧,随增大而________;
试确定抛物线的解析式.