题目内容
【题目】矩形ABCD中,AB=5,BC=4,将矩形折叠,使得点B落在线段CD的点F处,则线段BE的长为_____________.
【答案】2.5
【解析】首先根据折叠的性质与矩形的性质,得到AF=AB=5,EF=BE,AD=BC=4;然后在Rt△ADF中,利用勾股定理,求得DF的长,进而得到CF的长;再设CE=x,则EF=BE=4-x,在Rt△CEF中,利用勾股定理列出关于x的方程,求得x的值,最后由BE=BC-CE,即可得到结果.
解:由题意可得AF=AB=5,AD=BC=4,EF=BE,
在Rt△ADF中,由勾股定理,得DF===3.
在矩形ABCD中,DC=AB=5,
∴CF=DC-DF=2.
设CE=x,则EF=BE=4-x,
在Rt△CEF中,CE2+CF2=EF2,即x2+22=(4-x)2,
解得x=1.5,
则BE=4-x=2.5.
故答案为:2.5.
【题目】某商场投入13 800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:
类别/单价 | 成本价 | 销售价(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)该商场购进甲、乙两种矿泉水各多少箱?
(2)全部售完500箱矿泉水,该商场共获得利润多少元?
【题目】(2016·天津)公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台,租车费用为400元,每辆乙种货车一次最多运送机器30台,租车费用为280元.
(1)设租用甲种货车x辆(x为非负整数),试填写表格:
表一:
租用甲种货车的数量 / 辆 | 3 | 7 | x |
租用的甲种货车最多运送机器的数量 / 台 | 135 | ||
租用的乙种货车最多运送机器的数量 / 台 | 150 |
表二:
租用甲种货车的数量 / 辆 | 3 | 7 | x |
租用甲种货车的费用/ 元 | 2800 | ||
租用乙种货车的费用 / 元 | 280 |
(2)若租用甲种货车x辆时,设两种货车的总费用为y元,试确定能完成此项运送任务的最节省费用的租车方案.