题目内容
【题目】大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.
大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.
小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)
(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;
(2)小双设计的游戏方案对双方是否公平?不必说理.
【答案】(1)不公平.理由参见解析;(2)不公平.
【解析】
试题分析:游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
试题解析:(1)大双的设计游戏方案不公平.可能出现的所有结果列表如下:
A袋 积 B袋 | 1 | 2 | 3 |
4 | 4 | 8 | 12 |
5 | 5 | 10 | 15 |
或列树状图如下:
∴P(大双得到门票)=P(积为偶数)==,P(小双得到门票)=P(积为奇数)=,∵≠,∴大双的设计方案不公平.(2)小双的设计方案不公平.参考:可能出现的所有结果列树状图如下:
练习册系列答案
相关题目