题目内容

【题目】如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.

【答案】解:∵OE平分∠AOB,OF平分∠BOC, ∴∠BOE= ∠AOB= ×90°=45°,∠COF=∠BOF= ∠BOC,
∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,
∴∠BOC=2∠BOF=30°;
∠AOC=∠BOC+∠AOB=30°+90°=120°
【解析】根据角平分线的定义得到∠BOE= ∠AOB=45°,∠COF=∠BOF= ∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.
【考点精析】利用角的平分线对题目进行判断即可得到答案,需要熟知从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网