题目内容
【题目】方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示. 方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.
请你帮助方成同学解决以下问题:
(1)分别求出线段BC,CD所在直线的函数表达式;
(2)当20<y<30时,求t的取值范围;
(3)分别求出甲,乙行驶的路程S甲 , S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;
(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过 h与乙相遇,问丙出发后多少时间与甲相遇?
【答案】
(1)解:直线BC的函数解析式为y=kt+b,
把(1.5,0),( )代入得:
解得: ,
∴直线BC的解析式为:y=40t﹣60;
设直线CD的函数解析式为y1=k1t+b1,
把( ),(4,0)代入得: ,
解得: ,
∴直线CD的函数解析式为:y=﹣20t+80
(2)解:设甲的速度为akm/h,乙的速度为bkm/h,根据题意得;
,
解得: ,
∴甲的速度为60km/h,乙的速度为20km/h,
∴OA的函数解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20,
当20<y<30时,
即20<40t﹣60<30,或20<﹣20t+80<30,
解得: 或
(3)解:根据题意得:S甲=60t﹣60( )
S乙=20t(0≤t≤4),
所画图象如图2所示:
(4)解:当t= 时, ,丙距M地的路程S丙与时间t的函数表达式为:S丙=﹣40t+80(0≤t≤2),
如图3,
S丙=﹣40t+80与S甲=60t﹣60的图象交点的横坐标为 ,
所以丙出发 h与甲相遇
【解析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度、所以OA的函数解析式为:y=20t(0≤t≤1),所以点A的纵坐标为20,根据当20<y<30时,得到20<40t﹣60<30,或20<﹣20t+80<30,解不等式组即可;(3)得到S甲=60t﹣60( ),S乙=20t(0≤t≤4),画出函数图象即可;(4)确定丙距M地的路程S丙与时间t的函数表达式为:S丙=﹣40t+80(0≤t≤2),根据S丙=﹣40t+80与S甲=60t﹣60的图象交点的横坐标为 ,所以丙出发 h与甲相遇.