题目内容

【题目】
(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.

【答案】
(1)证明:在正方形ABCD中,

∠ABE=∠ADG,AD=AB,

在△ABE和△ADG中,

∴△ABE≌△ADG(SAS),

∴∠BAE=∠DAG,AE=AG,

∴∠EAG=90°,

在△FAE和△GAF中,

∴△FAE≌△GAF(SAS),

∴EF=FG;


(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.

∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.

∵CE⊥BC,∴∠ACE=∠B=45°.

在△ABM和△ACE中,

∴△ABM≌△ACE(SAS).

∴AM=AE,∠BAM=∠CAE.

∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.

于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.

在△MAN和△EAN中,

∴△MAN≌△EAN(SAS).

∴MN=EN.

在Rt△ENC中,由勾股定理,得EN2=EC2+NC2

∴MN2=BM2+NC2

∵BM=1,CN=3,

∴MN2=12+32

∴MN=


【解析】(1)证△ADG≌△ABE,△FAE≌△FAG,根据全等三角形的性质求出即可;(2)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网