题目内容
【题目】为了在中考体育考试中取得好成绩,每位同学都认真训练,体育成绩也大幅提高,这是从我校某次模拟考试中随机抽取了50名同学的一分钟跳绳次数,并绘制出部分频数分布表和部分频数分布直方图,如下图所示:
请结合图表完成下列问题:
(1)表中的a= ;
(2)请把频数分布直方图补充完整;
(3)若初三年级共有800名学生,中考体考一分钟跳绳次数大于等于185即为满分20分,根据以上信息,请你估算全年级学生一分钟跳绳次数得满分的人数.
【答案】(1)12.(2)详见解析;(3)96(人).
【解析】
(1)根据总人数=各组人数之和,即可解决问题;
(2)3,4组人数画出条形图即可;
(3)用样本估计总体的思想即可解决问题;
解:(1)a=50﹣6﹣8﹣18﹣6=12(人).
故答案为12.
(2)频数分布直方图如图所示,
(3)初三年级共有800名学生,得满分的人数=800×=96(人).
【题目】运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度h(m)与它的飞行时间t(s)满足二次函数关系,t与h的几组对应值如下表所示.
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h与t之间的函数关系式(不要求写t的取值范围);
(2)求小球飞行3s时的高度;
(3)问:小球的飞行高度能否达到22m?请说明理由.
【题目】已知二次函数的解析式是y=x2﹣2x﹣3.
(1)与y轴的交点坐标是 ,顶点坐标是 .
(2)在坐标系中利用描点法画出此抛物线;
x | … | … | |||||
y | … | … |
(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是 .
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
计算方差的公式:s2= [(x1-)2+(x2-)2++(xn-)2]