题目内容
【题目】如图,直线y=kx+b经过点A(-5,0),B(-1,4)
(1)求直线AB的表达式;
(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.
【答案】(1)y=x+5;(2);(3)x>-3.
【解析】
(1)利用待定系数法求一次函数解析式即可;
(2)联立两直线解析式,解方程组可得到两直线交点C的坐标,即可求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
(3)根据图形,找出点C右边的部分的x的取值范围即可.
解:(1)∵直线y=kx+b经过点A(-5,0),B(-1,4),
,解得,
∴直线AB的表达式为:y=x+5;
(2)∵若直线y= -2x-4与直线AB相交于点C,
∴,解得,故点C(-3,2).
∵y= -2x-4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,-4),
直线CE:y= -2x-4与直线AB及y轴围成图形的面积为:DE|Cx|=×9×3=;
(3)根据图象可得x>-3.
故答案为:(1)y=x+5;(2);(3)x>-3.
练习册系列答案
相关题目