题目内容
【题目】如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.
(1)求∠FDP的度数;
(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;
(3)连接AC,若正方形的边长为,请直接写出△ACC′的面积最大值.
【答案】(1)45°;(2)BP+DP=AP,证明详见解析;(3)﹣1.
【解析】
(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=∠ADC=45°;
(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;
(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.
(1)由对称得:CD=C'D,∠CDE=∠C'DE,
在正方形ABCD中,AD=CD,∠ADC=90°,
∴AD=C'D,
∵F是AC'的中点,
∴DF⊥AC',∠ADF=∠C'DF,
∴∠FDP=∠FDC'+∠EDC'=∠ADC=45°;
(2)结论:BP+DP=AP,
理由是:如图,作AP'⊥AP交PD的延长线于P',
∴∠PAP'=90°,
在正方形ABCD中,DA=BA,∠BAD=90°,
∴∠DAP'=∠BAP,
由(1)可知:∠FDP=45°
∵∠DFP=90°
∴∠APD=45°,
∴∠P'=45°,
∴AP=AP',
在△BAP和△DAP'中,
∵,
∴△BAP≌△DAP'(SAS),
∴BP=DP',
∴DP+BP=PP'=AP;
(3)如图,过C'作C'G⊥AC于G,则S△AC'C=ACC'G,
Rt△ABC中,AB=BC=,
∴AC=,即AC为定值,
当C'G最大值,△AC'C的面积最大,
连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,
∵CD=C'D=,OD=AC=1,
∴C'G=﹣1,
∴S△AC'C=.