题目内容
【题目】如图,△EBF为等腰直角三角形,点B为直角顶点, 四边形ABCD是正方形.
⑴ 求证:△ABE≌△CBF;
⑵ CF与AE有什么特殊的位置关系?请证明你的结论.
【答案】(1)见解析;(2)CF⊥AE,理由见解析
【解析】
(1)根据等腰直角三角形的性质得出BE=BF,∠EBF=90°,再根据正方形的性质得出AB=BC,∠ABC=90°,根据余角的性质得到∠EBA=∠CBF,最后根据SAS证明结果;
(2)延长CF,交AE于点G,根据补角的性质得出∠AEB+∠BFG=180°,再根据四边形内角和得出∠EGF+∠EBF=180°,从而可得∠EGF=90°,即可得到结果.
解:(1)∵△EBF为等腰直角三角形,
∴BE=BF,∠EBF=90°,
则∠EBA+∠FBA=90°,
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°,则∠ABF+∠CBF=90°,
∴∠EBA=∠CBF,
又∵BE=BF,AB=BC,
∴△ABE≌△CBF(SAS);
(2)延长CF,交AE于点G,
由(1)得:∠CFB=∠AEB,
∵∠CFB+∠BFG=180°,
∴∠AEB+∠BFG=180°,
∴∠EGF+∠EBF=180°,
∵∠EBF=90°,
∴∠EGF=90°,
∴CF⊥AE.
练习册系列答案
相关题目