题目内容
【题目】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:
loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:logaM=m,logaN=n,则M=am,N=an
∴MN=aman=am+n,由对数的定义得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解决以下问题:
(1)将指数式53=125转化为对数式 ;
(2)log24= ,log381= ,log464= .(直接写出结果)
(3)证明:证明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0).(写出证明过程)
(4)拓展运用:计算计算log34+log312﹣log316= .(直接写出结果)
【答案】(1)3=log5125;(2)2,4,3;(3)见解析;(4)1.
【解析】
(1)根据题意可以把指数式53=125写成对数式;
(2)运用对数的定义进行解答便可;
(3)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;
(4)根据公式:loga(MN)=logaM+logaN以及loga=logaM﹣logaN的逆运用求解即可得到答案;
解:(1)∵一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=logaN.
∴3=log5125,
故答案为:3=log5125;
(2)∵22=4,34=81,43=64,
∴log24=2,log381=4,log464=3,
故答案为:2;4;3;
(3)设logaM=m,logaN=n,则M=am,N=an,
∴==am﹣n,
∴由对数的定义得m﹣n=loga,
又∵m﹣n=logaM﹣logaN,
∴loga=logaM﹣logaN;
(4)根据公式:loga(MN)=logaM+logaN以及loga=logaM﹣logaN得到:
log34+log312﹣log316=log3(4×12÷16)=log33=1.
故答案为:1.