题目内容
如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
(1)DE=BD;(2)4.8
试题分析:(1)连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.
(2)由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.
(1)如图,连接AD,则AD⊥BC,
在等腰三角形ABC中,AD⊥BC,
∴∠CAD=∠BAD(等腰三角形三线合一),
∴弧ED=弧BD,
∴DE=BD;
(2)∵AB=5,BD=BC=3,
∴AD=4,
∵AB=AC=5,
∴AC•BE=CB•AD,
∴BE=4.8.
点评:用等腰三角形三线合一的特点得出圆周角相等是解答本题的关键.
练习册系列答案
相关题目