题目内容

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF⊥AC,垂足为点F.
(1)求证:DF是⊙O的切线;
(2)若AE=4,cosA= ,求DF的长.

【答案】
(1)证明:如图,连接OD,作OG⊥AC于点G,

∵OB=OD,

∴∠ODB=∠B,

又∵AB=AC,

∴∠C=∠B,

∴∠ODB=∠C,

∵DF⊥AC,

∴∠DFC=90°,

∴∠ODF=∠DFC=90°,

∴DF是⊙O的切线.


(2)解:AG= AE=2,

∵cosA=

∴OA= = =5,

∴OG= =

∵∠ODF=∠DFG=∠OGF=90°,

∴四边形OGFD为矩形,

∴DF=OG=


【解析】(1)证明:如图,连接OD,作OG⊥AC于点G,推出∠ODB=∠C;然后根据DF⊥AC,∠DFC=90°,推出∠ODF=∠DFC=90°,即可推出DF是⊙O的切线.(2)首先判断出:AG= AE=2,然后判断出四边形OGFD为矩形,即可求出DF的值是多少.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网