题目内容
【题目】某生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单价x(元/件)的关系满足下表所示的规律.
销售单价x(元/件) | … | 60 | 65 | 70 | 80 | 85 | … |
年销售量y(万件) | … | 140 | 135 | 130 | 120 | 115 | … |
(1)y与x之间的函数关系式及自变量x的取值范围。
(2)经测算:年销售量不低于90万件时,每件产品成本降低2元,设销售该产品年获利润为W(万元)(W=年销售额﹣成本﹣投资),求出年销售量低于90万件和不低于90万件时,W与x之间的函数关系式;
(3)在(2)的条件下,当销售单位定为多少时,公司销售这种产品年获利润最大?最大利润为多少万元?
【答案】
(1)解:由题意得:
y=﹣x+200(40≤x≤180)
(2)解:当y<90,即﹣x+200<90时,x>110
W=(x﹣40)(﹣x+200)﹣2000
=﹣x2+240x﹣10000
当y≥90,即﹣x+200≥90时,x≤110
W=(x﹣38)(﹣x+200)﹣2000
=﹣x2+238x﹣9600
∴
(3)解:当110<x≤180时,由W=﹣x2+240x﹣10000=﹣(x﹣120)2+4400得W最大=4400
当38≤x≤110时,W=﹣x2+238x﹣9600,
∴该函数图象是抛物线的一部分,该抛物线开口向下,它的对称轴是直线x=119,在对称轴左侧W随x的增大而增大.
∴当x=110,W最大=(110﹣38)×(﹣110+200)﹣2000=72×90﹣2000=4480
答:当销售单位定为110元时,年获利润最大,最大利润为4480万元.
【解析】(1)求一次函数解析式可以观察表格直接写出,由60﹣65﹣70,自变量每次增加5,函数值每次减少5;也可以设一次函数解析式得出.(2)市场营销问题,根据题目所给等量关系表示年利润,根据二次函数的性质及自变量取值范围求最大利润.
【题目】下表给出了代数式x2+bx+c与x的一些对应值:
x | … | 0 | 1 | 2 | 3 | 4 | … |
x2+bx+c | … | 3 | ﹣1 | 3 | … |
(1)请在表内的空格中填入适当的数;
(2)设y=x2+bx+c,则当x取何值时,y>0;
(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?