题目内容
【题目】如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.
【答案】(1)详见解析;(2)
【解析】
(1)由AB是⊙O的直径,可得∠ACB=∠BCD=90°,又由BD是⊙O的切线,根据同角的余角相等,可得∠A=∠CBD,利用有两角对应相等的三角形相似,即可证得△ABC∽△BDC;
(2)由AC=8,BC=6,可求得△ABC的面积,又由△ABC∽△BDC,根据相似三角形的面积比等于相似比的平方,即可求得△BDC的面积.
(1)∵BD是⊙O的切线,
∴AB⊥BD,
∴∠ABD=90°.
∴∠A+∠D=90°.
∵AB是⊙O的直径,
∴∠ACB=∠BCD=90°,
∴∠CBD+∠D=90°,
∴∠A=∠CBD,
∴△ABC∽△BDC;
(2)∵△ABC∽△BDC,
∴,
∵AC=8,BC=6,
∴S△ABCACBC8×6=24,
∴S△BDC=S△ABC24÷()2.
练习册系列答案
相关题目