题目内容

【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.

(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.

【答案】
(1)解:MN是⊙O切线.

理由:连接OC.

∵OA=OC,

∴∠OAC=∠OCA,

∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,

∴∠BCM=∠BOC,

∵∠B=90°,

∴∠BOC+∠BCO=90°,

∴∠BCM+∠BCO=90°,

∴OC⊥MN,

∴MN是⊙O切线.


(2)解:由(1)可知∠BOC=∠BCM=60°,

∴∠AOC=120°,

在Rt△BCO中,OC=OA=4,∠BCO=30°,

∴BO= OC=2,BC=2

∴S=S扇形OAC﹣SOAC= = ﹣4


【解析】(1)要证直线MN与⊙O的切线,连接OC.易证∠BOC=2∠A,由∠BCM=2∠A,得出∠BOC=∠BCM,在Rt△OBC中,根据直角三角形两锐角互余,可推出OC⊥MN,即可得出结论。
(2)先求出∠AOC的度数,在Rt△BCO中,利用解直角三角形求出BO、BC的长,根据S=S扇形OAC﹣SOAC,即可求出阴影部分的面积。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网