题目内容
【题目】如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.
(1)求证:AD∥BC;
(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.
【答案】
(1)证明:∵AD平分∠CAE,
∴∠DAG= ∠CAG,
∵AB=AC,
∴∠B=∠ACB,
∵∠CAG=∠B+∠ACB,
∴∠B= ∠CAG,
∴∠B=∠DAG,
∴AD∥BC
(2)解:∵CG⊥AD,
∴∠AFC=∠AFG=90°,
在△AFC和△AFG中,
,
∴△AFC≌△AFG(ASA),
∴CF=GF,
∵AD∥BC,
∴△AGF∽△BGC,
∴GF:GC=AF:BC=1:2,
∴BC=2AF=2×4=8
【解析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG= ∠CAG,继而证得结论;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案.
练习册系列答案
相关题目