题目内容

【题目】如图所示,在△ABC中,CDAB上的中线,且DADBDC

1)已知∠A30°,求∠ACB的度数;

2)已知∠A40°,求∠ACB的度数;

3)已知∠Ax°,求∠ACB的度数;

4)请你根据解题结果归纳出一个结论.

【答案】190°;(290°;(390°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.

【解析】

1)(2)(3)利用等腰三角形及三角形内角和定理即可求出答案;

4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.

解:(1)∵在△ABC中,CDAB上的中线,且DADC,∠A30°

∴∠ACD30°

∵∠CDB是△ACD的外角

∴∠CDB60°

DBCD

∴∠DCB=∠B60°

∴∠ACB=∠ACD+DCB30°+60°=90°;

2)若∠A40°,同(1),可知∠ACD40°,∠CDB40°+40°=80°

DCB180°﹣∠CDB)=180°﹣80°)=50°

∴∠ACB=∠ACD+DCB40°+50°=90°;

3)若∠Ax°,同(1),可知∠ACDx°,∠CDBx°+x°=2x°

DCB180°﹣∠CDB)=180°﹣2x°)=90°﹣x°,

故∠ACB=∠ACD+DCBx°+90°﹣x°=90°;

4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网