题目内容
【题目】如图所示,在△ABC中,CD是AB上的中线,且DA=DB=DC.
(1)已知∠A=30°,求∠ACB的度数;
(2)已知∠A=40°,求∠ACB的度数;
(3)已知∠A=x°,求∠ACB的度数;
(4)请你根据解题结果归纳出一个结论.
【答案】(1)90°;(2)90°;(3)90°;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.
【解析】
(1)(2)(3)利用等腰三角形及三角形内角和定理即可求出答案;
(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.
解:(1)∵在△ABC中,CD是AB上的中线,且DA=DC,∠A=30°
∴∠ACD=30°
∵∠CDB是△ACD的外角
∴∠CDB=60°
∵DB=CD
∴∠DCB=∠B=60°
∴∠ACB=∠ACD+∠DCB=30°+60°=90°;
(2)若∠A=40°,同(1),可知∠ACD=40°,∠CDB=40°+40°=80°
∠DCB=(180°﹣∠CDB)=(180°﹣80°)=50°
∴∠ACB=∠ACD+∠DCB=40°+50°=90°;
(3)若∠A=x°,同(1),可知∠ACD=x°,∠CDB=x°+x°=2x°
∠DCB=(180°﹣∠CDB)=(180°﹣2x°)=90°﹣x°,
故∠ACB=∠ACD+∠DCB=x°+90°﹣x°=90°;
(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90°.
【题目】为了迎接五一黄金周的购物高峰,某品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋价格 | 甲 | 乙 |
进价(元/双) | m | m﹣30 |
售价(元/双) | 240 | 160 |
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)若购进乙种运动鞋x(双),要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于13000元且不超过13500元,问该专卖店有几种进货方案;
(3)在(2)的条件下求出总利润y(元)与购进乙种运动鞋x(双)的函数关系式,并用关系式说明哪种方案的利润最大,最大利润是多少.