题目内容

【题目】阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1 , y1)与P2(x2 , y2)的“非常距离”,给出如下定义:
若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.
例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).

(1)已知点A(﹣ ,0),B为y轴上的一个动点.
①若点B(0,3),则点A与点B的“非常距离”为
②若点A与点B的“非常距离”为2,则点B的坐标为
③直接写出点A与点B的“非常距离”的最小值
(2)已知点D(0,1),点C是直线y= x+3上的一个动点,如图2,求点C与点D“非常距离”的最小值及相应的点C的坐标.

【答案】
(1)3;(0,2)或(0,﹣2);
(2)

解:如图2,取点C与点D的“非常距离”的最小值时,

需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,

此时|x1﹣x2|=|y1﹣y2|,即AC=AD,

∵C是直线y= x+3上的一个动点,点D的坐标是(0,1),

∴设点C的坐标为(x0 x0+3),

∴﹣x0= x0+2,

此时,x0=﹣

∴点C与点D的“非常距离”的最小值为:|x0|=

此时C(﹣ ).


【解析】解:(1)∵|﹣ ﹣0|= ,|0﹣3|=3,
<3,
∴点A与点B的“非常距离”为3.
所以答案是:3;②∵B为y轴上的一个动点,
∴设点B的坐标为(0,y).
∵|﹣ ﹣0|= ≠2,
∴|0﹣y|=2,
解得,y=2或y=﹣2;
∴点B的坐标是(0,2)或(0,﹣2),
所以答案是:(0,2)或(0,﹣2);③点A与点B的“非常距离”的最小值为
所以答案是:
【考点精析】掌握绝对值是解答本题的根本,需要知道正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网