题目内容

【题目】在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是

【答案】(﹣1,0)
【解析】解:由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上. 设直线AB的解析式为y=kx+b,
∵A(0,1),B(1,2),

解得
∴y=x+1,
令y=0,得0=x+1,
解得x=﹣1.
∴点P的坐标是(﹣1,0).
故答案为(﹣1,0).

由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA﹣PB|<AB,又因为A(0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA﹣PB|=AB,即|PA﹣PB|≤AB,所以本题中当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网