题目内容

【题目】如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于(
A.3:4
B. :2
C. :2
D.2

【答案】D
【解析】解:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M, ∵根据三角形的面积和平行四边形的面积得:SDEC=SDFA= S平行四边形ABCD
AF×DP= CE×DQ,
∴AF×DP=CE×DQ,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∵∠DAB=60°,
∴∠CBN=∠DAB=60°,
∴∠BFN=∠MCB=30°,
∵AB:BC=3:2,
∴设AB=3a,BC=2a,
∵AE:EB=1:2,F是BC的中点,
∴BF=a,BE=2a,
BN= a,BM=a,
由勾股定理得:FN= a,CM= a,
AF= = a,
CE= =2 a,
aDP=2 aDQ
∴DP:DQ=2
故选:D.

连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积和平行四边形的面积得出SDEC=SDFA= S平行四边形ABCD , 求出AF×DP=CE×DQ,设AB=3a,BC=2a,则BF=a,BE=2a,BN= a,BM=a,FN= a,CM= a,求出AF= a,CE=2 a,代入求出即可.

一题一题找答案解析太慢了
下载作业精灵直接查看整书答案解析
立即下载
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网