题目内容
【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,
(1)求DE的长;
(2)过点EF作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
【答案】(1)2-;(2)2-;(3)3-4.
【解析】
(1)求出,根据勾股定理求出,即可求出;
(2)求出,根据全等三角形的性质得出即可;
(3)延长交于,证,得出比例式,代入即可求出答案.
解:(1)∵四边形ABCD是正方形,
∴∠ABC=∠ADC=90°,
∠DBC=∠BCA=∠ACD=45°,
∵CE平分∠DCA,
∴∠ACE=∠DCE=∠ACD=22.5°,
∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,
∵∠DBC=45°,
∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,
∴BE=BC=,
在Rt△ACD中,由勾股定理得:BD==2,
∴DE=BD﹣BE=2﹣;
(2)∵FE⊥CE,
∴∠CEF=90°,
∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,
∵∠FBE=∠CDE=45°,BE=BC=CD,
∴△FEB≌△ECD,
∴BF=DE=2﹣;
(3)延长GE交AB于F,
由(2)知:DE=BF=2﹣,
由(1)知:BE=BC=,
∵四边形ABCD是正方形,
∴AB∥DC,
∴△DGE∽△BFE,
∴=,
∴=,
解得:DG=3﹣4.
【题目】一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
A种水果/箱 | B种水果/箱 | |
甲店 | 11元 | 17元 |
乙店 | 9元 | 13元 |
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
【题目】为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:
甲林场 | 乙林场 | ||
购树苗数量 | 销售单价 | 购树苗数量 | 销售单价 |
不超过1000棵时 | 4元/棵 | 不超过2000棵时 | 4元/棵 |
超过1000棵的部分 | 3.8元/棵 | 超过2000棵的部分 | 3.6元/棵 |
设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).
(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为 元,若都在乙林场购买所需费用为 元;
(2)分别求出y甲、y乙与x之间的函数关系式;
(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?