题目内容
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N.
(1)若∠ABC=70°,则∠MNA的度数是 .
(2)连接NB,若AB=8cm,△NBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.
【答案】
(1)50°
(2)解:①∵AN=BN,
∴BN+CN=AN+CN=AC,
∵AB=AC=8cm,
∴BN+CN=8cm,
∵△NBC的周长是14cm.
∴BC=14﹣8=6cm.
②∵A、B关于直线MN对称,
∴连接AC与MN的交点即为所求的P点,此时P和N重合,
即△BNC的周长就是△PBC的周长最小值,
∴△PBC的周长最小值为14cm
【解析】解:(1)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=40°,
∵MN是AB的垂直平分线,
∴AN=BN,
∴∠ABN=∠A=40°,
∴∠ANB=100°,
∴∠MNA=50°;
故答案为50°.
(1)利用垂直平分线的性质和余角性质可求出结果;(2)利用垂直平分线的性质可转化△NBC的周长为AC+BC,作差求出BC;利用对称法,即B的对称点为A,连接AC,交MN 于N,△PBC的周长最小值为14cm.
练习册系列答案
相关题目