题目内容

【题目】已知Rt△ABC中,∠C=90°,AC=6,BC=8,点O和M分别为Rt△ABC的外心和内心,线段OM的长为

【答案】
【解析】解:如图,作△ABC的内切圆⊙M,过点M作MD⊥BC于D,ME⊥AC于E,MN⊥AB于N.
在Rt△ABC中,∵∠ACB=90°,AC=6,BC=8,
∴AB==10.
∵点O为△ABC的外心,
∴AO为外接圆半径,AO=AB=5.
设⊙M的半径为r,则MD=ME=r,
又∵∠MDC=∠MEC=∠C=90°,
∴四边形IECD是正方形,
∴CE=CD=r,AE=AN=6﹣r,BD=BN=8﹣r,
∵AB=10,
∴8﹣r+6﹣r=10,
解得r=2,
∴MN=r=2,AN=6﹣r=4.
在Rt△OIN中,∵∠MNO=90°,ON=AO﹣AN=5﹣4=1,
∴OM==
故答案是:

【考点精析】解答此题的关键在于理解三角形的内切圆与内心的相关知识,掌握三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网